Direct submolecular scale imaging of mesoscale molecular order in supported dipalmitoylphosphatidylcholine bilayers.
نویسندگان
چکیده
Supported dipalmitoylphosphatidylcholine (DPPC) bilayers are widely used membrane systems in biophysical and biochemical studies. Previously, short-range positional and orientational order of lipid headgroups of supported DPPC bilayers was observed at room temperature using low deflection noise frequency modulation atomic force microscopy (FM-AFM). While this ordering was supported by X-ray diffraction studies, it conflicted with diffusion coefficient measurements of gel-phase bilayers determined from fluorescence photobleaching experiments. In this work, we have directly imaged mica-supported DPPC bilayers with submolecular resolution over scan ranges up to 146 nm using low deflection noise FM-AFM. Both orientational and positional molecular ordering were observed in the mesoscale, indicative of crystalline order. We discuss these results in relation to previous biophysical studies and propose that the mica support induces mesoscopic crystalline order of the DPPC bilayer at room temperature. This study also demonstrates the recent advance in the scan range of submolecular scale AFM imaging.
منابع مشابه
Direct imaging of individual intrinsic hydration layers on lipid bilayers at Angstrom resolution.
The interactions between water and biological molecules have the potential to influence the structure, dynamics, and function of biological systems, hence the importance of revealing the nature of these interactions in relation to the local biochemical environment. We have investigated the structuring of water at the interface of supported dipalmitoylphosphatidylcholine bilayers in the gel phas...
متن کاملInvestigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy.
Under physiological conditions, multicomponent biological membranes undergo structural changes which help define how the membrane functions. An understanding of biomembrane structure-function relations can be based on knowledge of the physical and chemical properties of pure phospholipid bilayers. Here, we have investigated phase transitions in dipalmitoylphosphatidylcholine (DPPC) and dioleoyl...
متن کاملStructural Effects of Small Molecules on Phospholipid Bilayers Investigated by Molecular Simulations
We summarize and compare recent Molecular Dynamics simulations on the interactions of dipalmitoylphosphatidylcholine (DPPC) bilayers in the liquid crystalline phase with a number of small molecules including trehalose, a disaccharide of glucose, alcohols, and dimethylsulfoxide (DMSO). The sugar molecules tend to stabilize the structure of the bilayer as they bridge adjacent lipid headgroups. Th...
متن کاملAnalysis of simulated NMR order parameters for lipid bilayer structure determination.
The conventional formula for relating CD2 average order parameters to average methylenic travel is flawed when compared to molecular dynamics simulations of dipalmitoylphosphatidylcholine. Inspired by the simulated probability distribution functions, a new formula is derived that satisfactorily relates these quantities. This formula is used to obtain the average chain length , and...
متن کاملAFM study of interaction forces in supported planar DPPC bilayers in the presence of general anesthetic halothane.
In spite of numerous investigations, the molecular mechanism of general anesthetics action is still not well understood. It has been shown that the anesthetic potency is related to the ability of an anesthetic to partition into the membrane. We have investigated changes in structure, dynamics and forces of interaction in supported dipalmitoylphosphatidylcholine (DPPC) bilayers in the presence o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 27 7 شماره
صفحات -
تاریخ انتشار 2011